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Abstract

A sufficient condition for asymptotic stability of the zero solution
to an abstract nonlinear evolution problem is given. The governing
equation is & = A(t)u+F(t,u), where A(t) is a bounded linear operator
in Hilbert space H and F(t,u) is a nonlinear operator, ||F(t,u)| <
col|ul|**P, p = const > 0, ¢y = const > 0. It is not assumed that the
spectrum o := o(A(t)) of A(t) lies in the fixed halfplane Rez < —k,
where k > 0 does not depend on ¢. As ¢ — oo the spectrum of A(¢) is
allowed to tend to the imaginary axis.
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1 Introduction

Let H be a Hilbert space. Consider the problem
= At)u+ F(t,u), t=>0, (1)

u(0) = o, (2)
where 4 = ‘zli—z; is the strong derivative, A(¢) is a linear closed densely defined
in H operator with the domain D(A), independent of ¢, ug € D(A). We
assume that F'(t,u) is a nonlinear mapping, locally Lipschitz with respect
to u, and satisfying the following inequality

IF(t, )] < collul™P, p>0, co >0, (3)
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where p and ¢y are constants. We also assume that

Re(Au,u) < —y(t)|[ul?,  Yu € D(A), (4)
where
V() >0, lim ~(t) =0, (5)
b1
~y(t) = o+ D7 d = const € (0,1], (6)

by and by are positive constants. Assumptions (B]) are satisfied by the func-
tion (@l). However, our method can be applied to many other ~(t) satisfying
assumptions ().

Definition 1. The zero solution to equation () is called Lyapunov stable
if for any € > 0, sufficiently small, there exists a 6 = §(e) > 0, such that if
|luo|| < &, then the solution to problem () exists on [0,00) and ||u(t)|| < e.
If, in addition,

Jim ()| = 0, ™)

then the zero solution is asymptotically stable.

Basic results on the Lyapunov stability of the solutions to (II) one finds
in [1]-[4], and in many other books and papers. In [4] these results are
established under the assumption that the operator A(t) is bounded, D(A) =
H, and A(t) has property B(v,N). This means ([4], p.178) that every
solution to the equation

= A(t)u (8)

satisfies the estimate
lu(®)]| < Ne™ju(s)[|, t>s>0, (9)
where N > 0 and v > 0 are some constants. The quantity

J— L
t—00 t

(10)

is called the exponent of growth of w(t). If X is the set of x for all solutions
to (8)), then
Kg := sSup k (11)
KEX
is called senior exponent of growth of solutions to (§). The general exponent
kg is defined as
kg = inf p, (12)



where p is the exponent in the inequality
lu()]| < Ne?u(s)ll, ¢ > 5> 0. (13)

One has
Ks < Rg, (14)

and the case ks < k4 can occur (the Perron’s example, see [4], p.177). If
kg < 0 then the zero solution to () is Lyapunov asymptotically stable. If
A(t) = A does not depend on ¢t and A is a bounded linear operator, then
kg < 0 if and only if the spectrum of A, denoted o(A), lies in the halfplane
Rez < kg < 0. In this case

le™]] < Noe™", (15)

and if ||F(t,u)| < q|lull, t > 0, |lu]| < p, and ¢ < '{—%, then equation ()
has negative general exponent also, so the zero solution to equation () is
Lyapunov asymptotically stable ([4], p.403).

If A= A(t), and for any solution to (8]) estimate (@) holds with v > 0,
and if (B) holds, then for any solution to (I) with |lug| < 6 and § > 0
sufficiently small, estimate (@) holds with a different N = N; and v = 1y,
0 < 11 < v (see [, p.414). This means that the zero solution to (1) is
asymptotically stable under the above assumptions.

The basic new result of our work, Theorem 1 in Section 2, generalizes
the above results to the case when the assumption x4, < 0 is not valid. We
allow the spectrum o(A(t)) to approach imaginary axis as ¢ — oo. This is
the principally new generalization of the classical Lyapunov-Krein theory.
If M is the complex plane and [ is the imaginary axis, then we assume that
o(A(t)) c M for every t > 0, but we allow lim;_,o d(o(A(t)),l) = 0, where
d(o,l) is the distance between two sets o and [. The new stability result
is formulated in Theorem [l In Lemma [I] an auxiliary result is formulated.
A proof of Lemma [ differs in details from the one in [7]. In Section 2
Theorem [I] and Lemma [I] are formulated. In Section 3 proofs are given. In
Section 4 examples of applications of our method are given.

2 Formulation of the results

Lemma 1. Let the inequality

9(t) < =v(D)g(t) + a(t)g"*P(t) + B(D), (16)



hold for t € [0,T),where g(t) > 0 has finite derivative from the right at
every point t at which g(t) is defined, v(t) > 0, a(t) > 0 and 5(t) > 0 are

continuous on Ry := [0,00) functions, and p = const > 0. Assume that
there exists a p(t) € C1[0,00), u(t) > 0, ju(t) > 0, such that

a®)[u®)] P+ B() < pTHOE) — AbTI@)), 20, (A7)

1(0)g(0) < 1. (18)

Then ¢(t) exists for all t € [0,00) and
0<g(t)<u(t), Vvt>0. (19)

Theorem 1. Assume that conditions ([I)-(6)) hold and by > 0 is sufficiently
large. Then the zero solution to () is asymptotically stable for any fized
initial data u(0).

3 Proofs
Proof of Lemma[ll Let v(t) := g(t)efot 1(9)ds .= ¢(t)q(t). Then (IB) yields
o(t) < g(tat)g” P (@) + q(t)B(1),  ©(0) =g(0), t>0. (20)

We do not assume a priori that v(t) is defined for all ¢ > 0. This conclusion
will follow from our proof. Denote n(t) := q(t)u~1(t), n(0) = u=(0) > ¢(0).
Using (I8) and (20), one gets

0(0) < a(0)0'(0) + 5(0) < p~H(0)[¥(0) — (0)u™(0)] = 7(0).  (21)
Since v(0) = g(0) < n(0) = x~1(0) by (@8], and ©(0) < 7(0), it follows that
v(t) <n(t), 0<t<rm, (22)

where 7 > 0 is the right end of the maximal interval on which v(t) < n(t),
Le., T =8upg . y(y)<n()} - Let us prove that 7 = co. Note that if ([22)) holds,
then

b(t) <n(t), 0<t<r (23)

Indeed, using (I7) and (20) one obtains
0(t) = q(t)(§+79) < qO)u (O — @O O] =0),  (24)
as claimed. If 7 < oo, then (22) and (Z3) imply
v(t = 0) —v(0) < n(r —0) —n(0). (25)



Since n(t) € C1[0, 00) by definition, inequality ([25) implies that v(7—0) < oo
and, since v(0) = g(0) < p~1(0) = 1(0), so that v(0) < 1(0), one gets

v(t —0) < n(t —0) < 0. (26)

Inequality (26]) implies that 7 = oo, because 7 is the maximal interval [0, T)
of the existence of v, and if 7 < oo is the right end of the maximal interval
of the existence of v then lim;_,,_ov(t) = oo, which contradicts (26)). Thus,
7 = 00 and, therefore, T = oo.

Lemma [I] is proved. O

Proof of Theorem[1. Let ||u(t)|| = g(¢t). Multiply () by wu(t), take the real
part, and get

g(t)g(t) < —vg*(t) + cog”P(t). (27)
Since g > 0, inequality (27)) is equivalent to
g(t) < —y()g(t) + cog" P (1). (28)

If g(t) > 0, then (28]) is obviously equivalent to 7). If g(t) = 0 Vt € A,
where A C R4 is an open set, then u(t) = 0Vt € A, so u(t) =0Vt >0
by the uniqueness of the solution to the Cauchy problem for equation ().
This uniqueness holds due to the assumed local Lipschitz condition for F'. If
g(to) = 0, but g(t) # 0 for (tg,tg+3) for some 6 > 0, then one divides (27]) by
g(t) for t € (tg,to+0), then one passes to the limit ¢ — to+0 and gets (28] at
t = to. Let us explain the meaning of ¢(g) at a point where u(tg) = 0. The
function 4(t) is continuous and it is known that W < |lu(t)]]. We define
g(to) = limy_s 4o ||u(to + s)||s~!. This limit exists and is equal to |u(to)]|.
Choose

o lft ~(s)ds . -1 .
ult) = p(0)eE 1% (1) (1) = (1) /2. (29)
Remark 1. Note that limy_oc pu(t) = oo if and only if [;°~(t)dt = oco. If
limy_, o p(t) = 00, then limy_o ||u(t)|| = 0. Under the assumption (6l) one

has fooo v(t)dt = 0o, and we use this to derive some results about asymptotic

stability. If d > 1 in (@), then fooo ~(t)dt < oo, and our methods can be used

for a derivation of some results on stability, rather than asymptotic stability.
Condition (18] is satisfied if

p(0) < [9(0)] 7, (30)

and we choose p(0) so that this inequality holds. Using (29)), one sees that
inequality (7)) is satisfied if

2cop P (0) < y(t)e? I Vs oy > 0. (31)



Inequality (BI)) is satisfied if
2cop~P(0) < 7(0), (32)

provided that
t
Y(0) < (t)ez fo 14w > (33)

Let us first use assumption (@) with d € (0,1):

t Hl-d _ pl-d
/Oy(s)ds:bl(b0+i_d b , 0<d< 1. (34)

In this case (0) = byby ¢, and inequality (33) holds if
2d < pbyby 2. (35)

Inequality (B3)) is a sufficient condition for the function on the right of ([B3]) to
have non-negative derivative for all ¢ > 0, i.e., to be monotonically growing
on [0,00), if y(t) is defined in (@)). Conditions ([B2]) and (35]) hold if

2c0u7P(0) < bibg®  and  2d < pbiby Y. (36)

For any fixed four parameters d, ¢, p, and p(0) < [g(0)]™!, where d € (0, 1),
co >0, p >0, and p(0) > 0, inequalities (B6]) can be satisfied by choosing
sufficiently large by > 0. With the choice of pu(t), given in (29), and the
parameters £(0), by and by, chosen as above, one obtains inequality (19):

ity (o)1)
1(0) ’

Since g(t) = ||u(t), inequality ([B7) implies asymptotic stability of the zero
solution to equation () for any initial value of ug, that is global asymptotic
stability. Moreover, ([B7) gives a rate of convergence of ||u(t)| to zero as
t — oo.

Consider now the case d = 1, y(t) = by(bg + 1)1,

t b1
/ A(s)ds = by 2L el — (B TINE (38)
0 bo bo

o

0<g(t) < de(0,1). (37)

In this case the choice of u(t) in (29]) yields




Choose 1(0) so that (30]) holds, and fix it. Then inequality (31)) holds if

bip
_ by (bo+t)z
2 P) < Yt > 0. 40
Copb ( )— b0+t bblTp ’ el ( )
0
Choose by so that
bip > 2, p > 0. (41)

Then (0) holds if and only if it holds for ¢ = 0, that is:

200u7(0) < 2L, (12)
bo

Inequality (42)) is satisfied if either by is chosen sufficiently large for any fixed
bo, or by is chosen sufficiently small for any fixed by > 2p~! (see (@I])). In
either case one concludes that the zero solution to equation () is globally
asymptotically stable.

Theorem [l is proved. O

4 Additional results. Examples

Example 1. Consider two equations:
alt) = Auft), (43)

o(t) = Av(t) + B(t)u(t), ¢t >0, (44)

where A and B(t) are bounded linear operators in H, A does not depend on
t, and

/OOO IB(t)||dt < oo. (45)

We assume that all the solutions to (43]) are bounded. Then by the Banach-
Steinhaus theorem the following inequality holds:

sup [|let]| < ¢ < 0. (46)
>0

This implies Lyapunov’s stability of the zero solution to (43]), and the inclu-
sion 0(A) C M:={z : Rez < 0}, which implies Re(Au,u) <0Vu e H. A
well-known result is (see, e.g., [2]):
If {@5) and Q) hold then the zero solution to () is Lyapunov stable.
The usual proof (see [2], where H = R") is based on the Gronwall in-
equality. We give a new simple proof based on Lemmalll Let g(¢) := ||v(¢)]|.



Multiply (44]) by w, take the real part and use the inequality Re(Av,v) <0
to get: gg < ||B(t)||g?(t), t > 0. Using the inequalities g(t) > 0 and (@5)),
one obtains

g(t) < IIB®)g(t), g(t) < g(0)elo” IBGNds .= ¢, 4(0). (47)

Therefore, the zero solution to (44]) is Lyapunov stable. Moreover, since
lg(t)] € L*'(R,), it follows that there exists the finite limit: lim o |Jv(t)]| :=
V.

Example 2. Consider a theorem of N. Levinson in R"™ (see [6] and [5],
pp. 159-164):

If @5)) and Q) hold, then for every solution v to (A4l one can find a
solution u to @3) such that

lim [|u(t) — v(t)|| = 0. (48)

t—00

We give a new short proof of a generalization of this theorem to an
infinite-dimensional Hilbert space H. If (45) and (6] hold, then, as we have
proved in Example 1, sup;sq ||v(t)]| < oo, sup;sq ||u(t)| < co. If u(0) = o,
then u(t) = e*4uq solves [@3). Let v(t) solve the equation

v(t) = etug — /too e B(s)u(s)ds. (49)

A simple calculation shows that v(t) solves ([@4]) and

[o(t)—u(t)]| < /too e IB(s)[[o(s) | ds < C/too 1B(s)llds = 0, t = oo,
(50)

where
C = sup|e"||sup [|v(t)|| < oo.
t>0 >0

The generalization of Levinson’s theorem for H is proved. O

Equation (9] is uniquely solvable in H by iterations for all sufficiently
large t because for such t the norm of the integral operator in ([49) is less
than one. The unique solution to ([@9]) for sufficiently large ¢ defines uniquely
the solution v to () which satisfies (4S)).

Remark 2. Our methods are applicable to the equation () with a force
term: 4= A(t)u + F(t,u) + f(t).
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